Subsections of Knative
Eventing
Subsections of Eventing
Broker
Knative Broker 是 Knative Eventing 系统的核心组件,它的主要作用是充当事件路由和分发的中枢,在事件生产者(事件源)和事件消费者(服务)之间提供解耦、可靠的事件传输。
以下是 Knative Broker 的关键作用详解:
事件接收中心:
Broker 是事件流汇聚的入口点。各种事件源(如 Kafka 主题、HTTP 源、Cloud Pub/Sub、GitHub Webhooks、定时器、自定义源等)将事件发送到 Broker。
事件生产者只需知道 Broker 的地址,无需关心最终有哪些消费者或消费者在哪里。
事件存储与缓冲:
Broker 通常基于持久化的消息系统实现(如 Apache Kafka, Google Cloud Pub/Sub, RabbitMQ, NATS Streaming 或内存实现 InMemoryChannel)。这提供了:
持久化: 确保事件在消费者处理前不会丢失(取决于底层通道实现)。
缓冲: 当消费者暂时不可用或处理速度跟不上事件产生速度时,Broker 可以缓冲事件,避免事件丢失或压垮生产者/消费者。
重试: 如果消费者处理事件失败,Broker 可以重新投递事件(通常需要结合 Trigger 和 Subscription 的重试策略)。
解耦事件源和事件消费者:
这是 Broker 最重要的作用之一。事件源只负责将事件发送到 Broker,完全不知道有哪些服务会消费这些事件。
事件消费者通过创建 Trigger 向 Broker 声明它对哪些事件感兴趣。消费者只需知道 Broker 的存在,无需知道事件是从哪个具体源产生的。
这种解耦极大提高了系统的灵活性和可维护性:
独立演进: 可以独立添加、移除或修改事件源或消费者,只要它们遵循 Broker 的契约。
动态路由: 基于事件属性(如 type, source)动态路由事件到不同的消费者,无需修改生产者或消费者代码。
多播: 同一个事件可以被多个不同的消费者同时消费(一个事件 -> Broker -> 多个匹配的 Trigger -> 多个服务)。
事件过滤与路由(通过 Trigger):
Broker 本身不直接处理复杂的过滤逻辑。过滤和路由是由 Trigger 资源实现的。
Trigger 资源绑定到特定的 Broker。
Trigger 定义了:
订阅者: 目标服务(Knative Service、Kubernetes Service、Channel 等)的地址。
过滤器: 基于事件属性(主要是 type 和 source,以及其他可扩展属性)的条件表达式。只有满足条件的事件才会被 Broker 通过该 Trigger 路由到对应的订阅者。
Broker 接收事件后,会检查所有绑定到它的 Trigger 的过滤器。对于每一个匹配的 Trigger,Broker 都会将事件发送到该 Trigger 指定的订阅者。
提供标准事件接口:
Broker 遵循 CloudEvents 规范,它接收和传递的事件都是 CloudEvents 格式的。这为不同来源的事件和不同消费者的处理提供了统一的格式标准,简化了集成。
多租户和命名空间隔离:
Broker 通常部署在 Kubernetes 的特定命名空间中。一个命名空间内可以创建多个 Broker。
这允许在同一个集群内为不同的团队、应用或环境(如 dev, staging)隔离事件流。每个团队/应用可以管理自己命名空间内的 Broker 和 Trigger。
总结比喻:
可以把 Knative Broker 想象成一个高度智能的邮局分拣中心:
接收信件(事件): 来自世界各地(不同事件源)的信件(事件)都寄到这个分拣中心(Broker)。
存储信件: 分拣中心有仓库(持久化/缓冲)临时存放信件,确保信件安全不丢失。
分拣规则(Trigger): 分拣中心里有很多分拣员(Trigger)。每个分拣员负责特定类型或来自特定地区的信件(基于事件属性过滤)。
投递信件: 分拣员(Trigger)找到符合自己负责规则的信件(事件),就把它们投递到正确的收件人(订阅者服务)家门口。
解耦: 寄信人(事件源)只需要知道分拣中心(Broker)的地址,完全不需要知道收信人(消费者)是谁、在哪里。收信人(消费者)只需要告诉分拣中心里负责自己这类信件的分拣员(创建 Trigger)自己的地址,不需要关心信是谁寄来的。分拣中心(Broker)和分拣员(Trigger)负责中间的复杂路由工作。
Broker 带来的核心价值:
松耦合: 彻底解耦事件生产者和消费者。
灵活性: 动态添加/移除消费者,动态改变路由规则(通过修改/创建/删除 Trigger)。
可靠性: 提供事件持久化和重试机制(依赖底层实现)。
可伸缩性: Broker 和消费者都可以独立伸缩。
标准化: 基于 CloudEvents。
简化开发: 开发者专注于业务逻辑(生产事件或消费事件),无需自己搭建复杂的事件总线基础设施。
Subsections of Broker
Install Kafka Broker
About
- Source, curl, kafkaSource,
- Broker
- Trigger
- Sink: ksvc, isvc
Install a Channel (messaging) layer
kubectl apply -f https://github.com/knative-extensions/eventing-kafka-broker/releases/download/knative-v1.18.0/eventing-kafka-controller.yaml
kubectl apply -f https://github.com/knative-extensions/eventing-kafka-broker/releases/download/knative-v1.18.0/eventing-kafka-channel.yaml
Install a Broker layer
kubectl apply -f https://github.com/knative-extensions/eventing-kafka-broker/releases/download/knative-v1.18.0/eventing-kafka-broker.yaml
for more information, you can check 🔗https://knative.dev/docs/eventing/brokers/broker-types/kafka-broker/
[Optional] Install Eventing extensions
- kafka sink
kubectl apply -f https://github.com/knative-extensions/eventing-kafka-broker/releases/download/knative-v1.18.0/eventing-kafka-sink.yaml
for more information, you can check 🔗https://knative.dev/docs/eventing/sinks/kafka-sink/
- kafka source
kubectl apply -f https://github.com/knative-extensions/eventing-kafka-broker/releases/download/knative-v1.18.0/eventing-kafka-source.yaml
for more information, you can check 🔗https://knative.dev/docs/eventing/sources/kafka-source/
Display Broker Message
Flow
flowchart LR A[Curl] -->|HTTP| B{Broker} B -->|Subscribe| D[Trigger1] B -->|Subscribe| E[Trigger2] B -->|Subscribe| F[Trigger3] E --> G[Display Service]
Setps
1. Create Broker Setting
kubectl apply -f - <<EOF
apiVersion: v1
kind: ConfigMap
metadata:
name: kafka-broker-config
namespace: knative-eventing
data:
default.topic.partitions: "10"
default.topic.replication.factor: "1"
bootstrap.servers: "kafka.database.svc.cluster.local:9092" #kafka service address
default.topic.config.retention.ms: "3600"
EOF
2. Create Broker
kubectl apply -f - <<EOF
apiVersion: eventing.knative.dev/v1
kind: Broker
metadata:
annotations:
eventing.knative.dev/broker.class: Kafka
name: first-broker
namespace: kserve-test
spec:
config:
apiVersion: v1
kind: ConfigMap
name: kafka-broker-config
namespace: knative-eventing
EOF
deadletterSink:
3. Create Trigger
kubectl apply -f - <<EOF
apiVersion: eventing.knative.dev/v1
kind: Trigger
metadata:
name: display-service-trigger
namespace: kserve-test
spec:
broker: first-broker
subscriber:
ref:
apiVersion: serving.knative.dev/v1
kind: Service
name: event-display
EOF
4. Create Sink Service (Display Message)
kubectl apply -f - <<EOF
apiVersion: serving.knative.dev/v1
kind: Service
metadata:
name: event-display
namespace: kserve-test
spec:
template:
spec:
containers:
- image: gcr.io/knative-releases/knative.dev/eventing/cmd/event_display
EOF
5. Test
kubectl run curl-test --image=curlimages/curl -it --rm --restart=Never -- \
-v "http://kafka-broker-ingress.knative-eventing.svc.cluster.local/kserve-test/first-broker" \
-X POST \
-H "Ce-Id: $(date +%s)" \
-H "Ce-Specversion: 1.0" \
-H "Ce-Type: test.type" \
-H "Ce-Source: curl-test" \
-H "Content-Type: application/json" \
-d '{"test": "Broker is working"}'
6. Check message
kubectl -n kserve-test logs -f deploy/event-display-00001-deployment
Kafka Broker Invoke ISVC
1. Prepare RBAC
- create cluster role to access CRD isvc
kubectl apply -f - <<EOF
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
name: kserve-access-for-knative
rules:
- apiGroups: ["serving.kserve.io"]
resources: ["inferenceservices", "inferenceservices/status"]
verbs: ["get", "list", "watch"]
EOF
- create rolebinding and grant privileges
kubectl apply -f - <<EOF
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
name: kafka-controller-kserve-access
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: kserve-access-for-knative
subjects:
- kind: ServiceAccount
name: kafka-controller
namespace: knative-eventing
EOF
2. Create Broker Setting
kubectl apply -f - <<EOF
apiVersion: v1
kind: ConfigMap
metadata:
name: kafka-broker-config
namespace: knative-eventing
data:
default.topic.partitions: "10"
default.topic.replication.factor: "1"
bootstrap.servers: "kafka.database.svc.cluster.local:9092" #kafka service address
default.topic.config.retention.ms: "3600"
EOF
3. Create Broker
kubectl apply -f - <<EOF
apiVersion: eventing.knative.dev/v1
kind: Broker
metadata:
annotations:
eventing.knative.dev/broker.class: Kafka
name: isvc-broker
namespace: kserve-test
spec:
config:
apiVersion: v1
kind: ConfigMap
name: kafka-broker-config
namespace: knative-eventing
delivery:
deadLetterSink:
ref:
apiVersion: serving.knative.dev/v1
kind: Service
name: event-display
EOF
4. Create InferenceService
you can create isvc first-tourchserve
service, by following 🔗link
5. Create Trigger
kubectl apply -f - << EOF
apiVersion: eventing.knative.dev/v1
kind: Trigger
metadata:
name: kserve-trigger
namespace: kserve-test
spec:
broker: isvc-broker
filter:
attributes:
type: prediction-request
subscriber:
uri: http://first-torchserve.kserve-test.svc.cluster.local/v1/models/mnist:predict
EOF
6. Test
Normally, we can invoke
first-tourchserve
by executing
export MASTER_IP=192.168.100.112
export ISTIO_INGRESS_PORT=$(kubectl -n istio-system get service istio-ingressgateway -o jsonpath='{.spec.ports[?(@.name=="http2")].nodePort}')
export SERVICE_HOSTNAME=$(kubectl -n kserve-test get inferenceservice first-torchserve -o jsonpath='{.status.url}' | cut -d "/" -f 3)
# http://first-torchserve.kserve-test.example.com
curl -v -H "Host: ${SERVICE_HOSTNAME}" -H "Content-Type: application/json" "http://${MASTER_IP}:${ISTIO_INGRESS_PORT}/v1/models/mnist:predict" -d @./mnist-input.json
Now, you can access model by executing
export KAFKA_BROKER_INGRESS_PORT=$(kubectl -n knative-eventing get service kafka-broker-ingress -o jsonpath='{.spec.ports[?(@.name=="http-container")].nodePort}')
curl -v "http://${MASTER_IP}:${KAFKA_BROKER_INGRESS_PORT}/kserve-test/isvc-broker" \
-X POST \
-H "Ce-Id: $(date +%s)" \
-H "Ce-Specversion: 1.0" \
-H "Ce-Type: prediction-request" \
-H "Ce-Source: event-producer" \
-H "Content-Type: application/json" \
-d @./mnist-input.json
Plugin
Subsections of Plugin
Eventing Kafka Broker
Subsections of Eventing Kafka Broker
Prepare Dev Environment
update go -> 1.24
install
ko
-> 1.8.0
go install github.com/google/ko@latest
# wget https://github.com/ko-build/ko/releases/download/v0.18.0/ko_0.18.0_Linux_x86_64.tar.gz
# tar -xzf ko_0.18.0_Linux_x86_64.tar.gz -C /usr/local/bin/ko
# cp /usr/local/bin/ko/ko /root/bin
- protoc
PB_REL="https://github.com/protocolbuffers/protobuf/releases"
curl -LO $PB_REL/download/v30.2/protoc-30.2-linux-x86_64.zip
# mkdir -p ${HOME}/bin/
mkdir -p /usr/local/bin/protoc
unzip protoc-30.2-linux-x86_64.zip -d /usr/local/bin/protoc
cp /usr/local/bin/protoc/bin/protoc /root/bin
# export PATH="$PATH:/root/bin"
rm -rf protoc-30.2-linux-x86_64.zip
- protoc-gen-go -> 1.5.4
go install google.golang.org/protobuf/cmd/protoc-gen-go@latest
export GOPATH=/usr/local/go/bin
- copy some code
mkdir -p ${GOPATH}/src/knative.dev
cd ${GOPATH}/src/knative.dev
git clone git@github.com:knative/eventing.git # clone eventing repo
git clone git@github.com:AaronYang0628/eventing-kafka-broker.git
cd eventing-kafka-broker
git remote add upstream https://github.com/knative-extensions/eventing-kafka-broker.git
git remote set-url --push upstream no_push
export KO_DOCKER_REPO=docker-registry.lab.zverse.space/data-and-computing/ay-dev
Build Async Preidction Flow
Flow
flowchart LR A[User Curl] -->|HTTP| B{ISVC-Broker:Kafka} B -->|Subscribe| D[Trigger1] B -->|Subscribe| E[Kserve-Triiger] B -->|Subscribe| F[Trigger3] E --> G[Mnist Service] G --> |Kafka-Sink| B
Setps
1. Create Broker Setting
kubectl apply -f - <<EOF
apiVersion: v1
kind: ConfigMap
metadata:
name: kafka-broker-config
namespace: knative-eventing
data:
default.topic.partitions: "10"
default.topic.replication.factor: "1"
bootstrap.servers: "kafka.database.svc.cluster.local:9092" #kafka service address
default.topic.config.retention.ms: "3600"
EOF
2. Create Broker
kubectl apply -f - <<EOF
apiVersion: eventing.knative.dev/v1
kind: Broker
metadata:
annotations:
eventing.knative.dev/broker.class: Kafka
name: isvc-broker
namespace: kserve-test
spec:
config:
apiVersion: v1
kind: ConfigMap
name: kafka-broker-config
namespace: knative-eventing
EOF
3. Create Trigger
kubectl apply -f - << EOF
apiVersion: eventing.knative.dev/v1
kind: Trigger
metadata:
name: kserve-trigger
namespace: kserve-test
spec:
broker: isvc-broker
filter:
attributes:
type: prediction-request-udf-attr # you can change this
subscriber:
uri: http://prediction-and-sink.kserve-test.svc.cluster.local/v1/models/mnist:predict
EOF
4. Create InferenceService
1kubectl apply -f - <<EOF
2apiVersion: serving.kserve.io/v1beta1
3kind: InferenceService
4metadata:
5 name: prediction-and-sink
6 namespace: kserve-test
7spec:
8 predictor:
9 model:
10 modelFormat:
11 name: pytorch
12 storageUri: gs://kfserving-examples/models/torchserve/image_classifier/v1
13 transformer:
14 containers:
15 - image: docker-registry.lab.zverse.space/data-and-computing/ay-dev/msg-transformer:dev9
16 name: kserve-container
17 env:
18 - name: KAFKA_BOOTSTRAP_SERVERS
19 value: kafka.database.svc.cluster.local
20 - name: KAFKA_TOPIC
21 value: test-topic # result will be saved in this topic
22 - name: REQUEST_TRACE_KEY
23 value: test-trace-id # using this key to retrieve preidtion result
24 command:
25 - "python"
26 - "-m"
27 - "model"
28 args:
29 - --model_name
30 - mnist
31EOF
[Optional] 5. Invoke InferenceService
- preparation
wget -O ./mnist-input.json https://raw.githubusercontent.com/kserve/kserve/refs/heads/master/docs/samples/v1beta1/torchserve/v1/imgconv/input.json
SERVICE_NAME=prediction-and-sink
MODEL_NAME=mnist
INPUT_PATH=@./mnist-input.json
PLAIN_SERVICE_HOSTNAME=$(kubectl -n kserve-test get inferenceservice $SERVICE_NAME -o jsonpath='{.status.url}' | cut -d "/" -f 3)
- fire!!
export INGRESS_HOST=192.168.100.112
export INGRESS_PORT=$(kubectl -n istio-system get service istio-ingressgateway -o jsonpath='{.spec.ports[?(@.name=="http2")].nodePort}')
curl -v -H "Host: ${PLAIN_SERVICE_HOSTNAME}" -H "Content-Type: application/json" -d $INPUT_PATH http://${INGRESS_HOST}:${INGRESS_PORT}/v1/models/$MODEL_NAME:predict
6. Invoke Broker
- preparation
cat > image-with-trace-id.json << EOF
{
"test-trace-id": "16ec3446-48d6-422e-9926-8224853e84a7",
"instances": [
{
"data": "iVBORw0KGgoAAAANSUhEUgAAABwAAAAcCAAAAABXZoBIAAAAw0lEQVR4nGNgGFggVVj4/y8Q2GOR83n+58/fP0DwcSqmpNN7oOTJw6f+/H2pjUU2JCSEk0EWqN0cl828e/FIxvz9/9cCh1zS5z9/G9mwyzl/+PNnKQ45nyNAr9ThMHQ/UG4tDofuB4bQIhz6fIBenMWJQ+7Vn7+zeLCbKXv6z59NOPQVgsIcW4QA9YFi6wNQLrKwsBebW/68DJ388Nun5XFocrqvIFH59+XhBAxThTfeB0r+vP/QHbuDCgr2JmOXoSsAAKK7bU3vISS4AAAAAElFTkSuQmCC"
}
]
}
EOF
- fire!!
export MASTER_IP=192.168.100.112
export KAFKA_BROKER_INGRESS_PORT=$(kubectl -n knative-eventing get service kafka-broker-ingress -o jsonpath='{.spec.ports[?(@.name=="http-container")].nodePort}')
curl -v "http://${MASTER_IP}:${KAFKA_BROKER_INGRESS_PORT}/kserve-test/isvc-broker" \
-X POST \
-H "Ce-Id: $(date +%s)" \
-H "Ce-Specversion: 1.0" \
-H "Ce-Type: prediction-request-udf-attr" \
-H "Ce-Source: event-producer" \
-H "Content-Type: application/json" \
-d @./image-with-trace-id.json
- check input data in kafka topic
knative-broker-kserve-test-isvc-broker
kubectl -n database exec -it deployment/kafka-client-tools -- bash -c \
'kafka-console-consumer.sh --bootstrap-server $BOOTSTRAP_SERVER --consumer.config $CLIENT_CONFIG_FILE --topic knative-broker-kserve-test-isvc-broker --from-beginning'
- check response result in kafka topic
test-topic
kubectl -n database exec -it deployment/kafka-client-tools -- bash -c \
'kafka-console-consumer.sh --bootstrap-server $BOOTSTRAP_SERVER --consumer.config $CLIENT_CONFIG_FILE --topic test-topic --from-beginning'