Rollout Example
Create the InferenceService
Follow the First Inference Service
tutorial. Set up a namespace kserve-test and create an InferenceService.
After rolling out the first model, 100% traffic goes to the initial model with service revision 1.
kubectl -n kserve-test get isvc sklearn-irisApply Canary Rollout Strategy
- Add the
canaryTrafficPercentfield to the predictor component - Update the
storageUrito use a new/updated model.
kubectl apply -n kserve-test -f - <<EOF
apiVersion: "serving.kserve.io/v1beta1"
kind: "InferenceService"
metadata:
name: "sklearn-iris"
namespace: kserve-test
spec:
predictor:
canaryTrafficPercent: 10
model:
args: ["--enable_docs_url=True"]
modelFormat:
name: sklearn
resources: {}
runtime: kserve-sklearnserver
storageUri: "gs://kfserving-examples/models/sklearn/1.0/model-2"
EOFAfter rolling out the canary model, traffic is split between the latest ready revision 2 and the previously rolled out revision 1.
kubectl -n kserve-test get isvc sklearn-irisCheck the running pods, you should now see port two pods running for the old and new model and 10% traffic is routed to
the new model. Notice revision 1 contains 0002 in its name, while revision 2 contains 0003.
kubectl get pods
NAME READY STATUS RESTARTS AGE
sklearn-iris-predictor-00002-deployment-c7bb6c685-ktk7r 2/2 Running 0 71m
sklearn-iris-predictor-00003-deployment-8498d947-fpzcg 2/2 Running 0 20mRun a prediction
Follow the next two steps (Determine the ingress IP and ports and Perform inference) in the First Inference Service tutorial.
Send more requests to the InferenceService to observe the 10% of traffic that routes to the new revision.
Promote the canary model
If the canary model is healthy/passes your tests,
you can promote it by removing the canaryTrafficPercent field and re-applying the InferenceService custom resource with the same name sklearn-iris
kubectl apply -n kserve-test -f - <<EOF
apiVersion: "serving.kserve.io/v1beta1"
kind: "InferenceService"
metadata:
name: "sklearn-iris"
namespace: kserve-test
spec:
predictor:
model:
args: ["--enable_docs_url=True"]
modelFormat:
name: sklearn
resources: {}
runtime: kserve-sklearnserver
storageUri: "gs://kfserving-examples/models/sklearn/1.0/model-2"
EOFNow all traffic goes to the revision 2 for the new model.
kubectl get isvc sklearn-iris
NAME URL READY PREV LATEST PREVROLLEDOUTREVISION LATESTREADYREVISION AGE
sklearn-iris http://sklearn-iris.kserve-test.example.com True 100 sklearn-iris-predictor-00002 17mThe pods for revision generation 1 automatically scales down to 0 as it is no longer getting the traffic.
kubectl get pods -l serving.kserve.io/inferenceservice=sklearn-iris
NAME READY STATUS RESTARTS AGE
sklearn-iris-predictor-00001-deployment-66c5f5b8d5-gmfvj 1/2 Terminating 0 17m
sklearn-iris-predictor-00002-deployment-5bd9ff46f8-shtzd 2/2 Running 0 15mRollback and pin the previous model
You can pin the previous model (model v1, for example) by setting the canaryTrafficPercent to 0 for the current
model (model v2, for example). This rolls back from model v2 to model v1 and decreases model v2’s traffic to zero.
Apply the custom resource to set model v2’s traffic to 0%.
kubectl apply -n kserve-test -f - <<EOF
apiVersion: "serving.kserve.io/v1beta1"
kind: "InferenceService"
metadata:
name: "sklearn-iris"
spec:
predictor:
canaryTrafficPercent: 0
model:
modelFormat:
name: sklearn
storageUri: "gs://kfserving-examples/models/sklearn/1.0/model-2"
EOFCheck the traffic split, now 100% traffic goes to the previous good model (model v1) for revision generation 1.
kubectl get isvc sklearn-iris
NAME URL READY PREV LATEST PREVROLLEDOUTREVISION LATESTREADYREVISION AGE
sklearn-iris http://sklearn-iris.kserve-test.example.com True 100 0 sklearn-iris-predictor-00002 sklearn-iris-predictor-00003 18mThe pods for previous revision (model v1) now routes 100% of the traffic to its pods while the new model (model v2) routes 0% traffic to its pods.
kubectl get pods -l serving.kserve.io/inferenceservice=sklearn-iris
NAME READY STATUS RESTARTS AGE
sklearn-iris-predictor-00002-deployment-66c5f5b8d5-gmfvj 1/2 Running 0 35s
sklearn-iris-predictor-00003-deployment-5bd9ff46f8-shtzd 2/2 Running 0 16mRoute traffic using a tag
You can enable tag based routing by adding the annotation serving.kserve.io/enable-tag-routing, so traffic can be
explicitly routed to the canary model (model v2) or the old model (model v1) via a tag in the request URL.
Apply model v2 with canaryTrafficPercent: 10 and serving.kserve.io/enable-tag-routing: "true".
kubectl apply -n kserve-test -f - <<EOF
apiVersion: "serving.kserve.io/v1beta1"
kind: "InferenceService"
metadata:
name: "sklearn-iris"
annotations:
serving.kserve.io/enable-tag-routing: "true"
spec:
predictor:
canaryTrafficPercent: 10
model:
modelFormat:
name: sklearn
storageUri: "gs://kfserving-examples/models/sklearn/1.0/model-2"
EOFCheck the InferenceService status to get the canary and previous model URL.
kubectl get isvc sklearn-iris -ojsonpath="{.status.components.predictor}" | jqThe output should look like
Since we updated the annotation on the InferenceService, model v2 now corresponds to sklearn-iris-predictor--00003.
You can now send the request explicitly to the new model or the previous model by using the tag in the request URL. Use
the curl command
from Perform inference and
add latest- or prev- to the model name to send a tag based request.
For example, set the model name and use the following commands to send traffic to each service based on the latest or prev tag.
curl the latest revision
MODEL_NAME=sklearn-iris
curl -v -H "Host: latest-${MODEL_NAME}-predictor-.kserve-test.example.com" -H "Content-Type: application/json" http://${INGRESS_HOST}:${INGRESS_PORT}/v1/models/$MODEL_NAME:predict -d @./iris-input.jsonor curl the previous revision
curl -v -H "Host: prev-${MODEL_NAME}-predictor-.kserve-test.example.com" -H "Content-Type: application/json" http://${INGRESS_HOST}:${INGRESS_PORT}/v1/models/$MODEL_NAME:predict -d @./iris-input.json