Subsections of 👨💻Schedmd Slurm
Build&Install
Subsections of Build&Install
Install On Debian
Cluster Setting
1 Manager, 1 Login Node and 2 Compute node:
hostname | IP | role | quota |
---|---|---|---|
manage01 | 192.168.56.115 | manager | 2C4G |
login01 | 192.168.56.116 | login | 2C4G |
compute01 | 192.168.56.117 | compute | 2C4G |
compute02 | 192.168.56.118 | compute | 2C4G |
Software Version:
software | version |
---|---|
os | Debian 12 bookworm |
slurm | 24.05.2 |
Prepare Steps (All Nodes)
- Modify the
/etc/network/interfaces
file (if you cannot get ipv4 address)
Append the following lines to the file
allow-hotplug enps08
iface enps08 inet dhcp
restart the network
systemctl restart networking
- Modify the
/etc/apt/sources.list
file Using tuna mirror
cat > /etc/apt/sources.list << EOF
deb https://mirrors.tuna.tsinghua.edu.cn/debian/ bookworm main contrib non-free non-free-firmware
deb-src https://mirrors.tuna.tsinghua.edu.cn/debian/ bookworm main contrib non-free non-free-firmware
deb https://mirrors.tuna.tsinghua.edu.cn/debian/ bookworm-updates main contrib non-free non-free-firmware
deb-src https://mirrors.tuna.tsinghua.edu.cn/debian/ bookworm-updates main contrib non-free non-free-firmware
deb https://mirrors.tuna.tsinghua.edu.cn/debian/ bookworm-backports main contrib non-free non-free-firmware
deb-src https://mirrors.tuna.tsinghua.edu.cn/debian/ bookworm-backports main contrib non-free non-free-firmware
deb https://mirrors.tuna.tsinghua.edu.cn/debian-security/ bookworm-security main contrib non-free non-free-firmware
deb-src https://mirrors.tuna.tsinghua.edu.cn/debian-security/ bookworm-security main contrib non-free non-free-firmware
EOF
- update apt cache
apt clean all && apt update
- set hostname on each node
hostnamectl set-hostname manage01
hostnamectl set-hostname login01
hostnamectl set-hostname compute01
hostnamectl set-hostname compute02
- set hosts file
cat >> /etc/hosts << EOF
192.168.56.115 manage01
192.168.56.116 login01
192.168.56.117 compute01
192.168.56.118 compute02
EOF
- disable firewall
systemctl stop nftables && systemctl disable nftables
- install packages
ntpdate
apt-get -y install ntpdate
sync server time
ln -sf /usr/share/zoneinfo/Asia/Shanghai /etc/localtime
echo 'Asia/Shanghai' >/etc/timezone
ntpdate time.windows.com
- add cron job to sync time
crontab -e
*/5 * * * * /usr/sbin/ntpdate time.windows.com
- create ssh key pair on each node
ssh-keygen -t rsa -b 4096 -C $HOSTNAME
- ssh login without password [All Node]
ssh-copy-id -i ~/.ssh/id_rsa.pub root@login01
ssh-copy-id -i ~/.ssh/id_rsa.pub root@compute01
ssh-copy-id -i ~/.ssh/id_rsa.pub root@compute02
ssh-copy-id -i ~/.ssh/id_rsa.pub root@manage01
ssh-copy-id -i ~/.ssh/id_rsa.pub root@compute01
ssh-copy-id -i ~/.ssh/id_rsa.pub root@compute02
Install Components
- Install NFS server
(Manager Node)
there are many ways to install NFS server
- using
yum install -y nfs-utils
, check https://pkuhpc.github.io/SCOW/docs/hpccluster/nfs - using
apt install -y nfs-kernel-server
, check https://www.linuxtechi.com/how-to-install-nfs-server-on-debian/ - or you can directly mount other shared storage.
create shared folder
mkdir /data
chmod 755 /data
modify vim /etc/exports
/data *(rw,sync,insecure,no_subtree_check,no_root_squash)
start nfs server
systemctl start rpcbind
systemctl start nfs-server
systemctl enable rpcbind
systemctl enable nfs-server
check nfs server
showmount -e localhost
# Output
Export list for localhost:
/data *
- Install munge service
- add user munge
(All Nodes)
groupadd -g 1108 munge
useradd -m -c "Munge Uid 'N' Gid Emporium" -d /var/lib/munge -u 1108 -g munge -s /sbin/nologin munge
- Install
rng-tools-debian
(Manager Nodes)
apt-get install -y rng-tools-debian
# modify service script
vim /usr/lib/systemd/system/rngd.service
[Service]
ExecStart=/usr/sbin/rngd -f -r /dev/urandom
systemctl daemon-reload
systemctl start rngd
systemctl enable rngd
apt-get install -y libmunge-dev libmunge2 munge
- generate secret key
(Manager Nodes)
dd if=/dev/urandom bs=1 count=1024 > /etc/munge/munge.key
- copy
munge.key
from manager node to the rest node(All Nodes)
scp -p /etc/munge/munge.key root@login01:/etc/munge/
scp -p /etc/munge/munge.key root@compute01:/etc/munge/
scp -p /etc/munge/munge.key root@compute02:/etc/munge/
- grant privilege on munge.key
(All Nodes)
chown munge: /etc/munge/munge.key
chmod 400 /etc/munge/munge.key
systemctl start munge
systemctl enable munge
Using systemctl status munge
to check if the service is running
- test munge
munge -n | ssh compute01 unmunge
- Install Mariadb
(Manager Nodes)
apt-get install -y mariadb-server
- create database and user
systemctl start mariadb
systemctl enable mariadb
ROOT_PASS=$(tr -dc A-Za-z0-9 </dev/urandom | head -c 16)
mysql -e "CREATE USER root IDENTIFIED BY '${ROOT_PASS}'"
mysql -uroot -p$ROOT_PASS -e 'create database slurm_acct_db'
- create user
slurm
,and grant all privileges on databaseslurm_acct_db
mysql -uroot -p$ROOT_PASS
create user slurm;
grant all on slurm_acct_db.* TO 'slurm'@'localhost' identified by '123456' with grant option;
flush privileges;
- create Slurm user
groupadd -g 1109 slurm
useradd -m -c "Slurm manager" -d /var/lib/slurm -u 1109 -g slurm -s /bin/bash slurm
Install Slurm (All Nodes)
- Install basic Debian package build requirements:
apt-get install -y build-essential fakeroot devscripts equivs
- Unpack the distributed tarball:
wget https://download.schedmd.com/slurm/slurm-24.05.2.tar.bz2 -O slurm-24.05.2.tar.bz2 &&
tar -xaf slurm*tar.bz2
- cd to the directory containing the Slurm source:
cd slurm-24.05.2 && mkdir -p /etc/slurm && ./configure
- compile slurm
make install
modify configuration files
(Manager Nodes)
- modify
/etc/slurm/slurm.conf
Refer to slurm.conf
cp /root/slurm-24.05.2/etc/slurm.conf.example /etc/slurm/slurm.conf vim /etc/slurm/slurm.conf
focus on these options:
SlurmctldHost=manage AccountingStorageEnforce=associations,limits,qos AccountingStorageHost=manage AccountingStoragePass=/var/run/munge/munge.socket.2 AccountingStoragePort=6819 AccountingStorageType=accounting_storage/slurmdbd JobCompHost=localhost JobCompLoc=slurm_acct_db JobCompPass=123456 JobCompPort=3306 JobCompType=jobcomp/mysql JobCompUser=slurm JobContainerType=job_container/none JobAcctGatherType=jobacct_gather/linux
- modify
/etc/slurm/slurmdbd.conf
Refer to slurmdbd.conf
cp /root/slurm-24.05.2/etc/slurmdbd.conf.example /etc/slurm/slurmdbd.conf vim /etc/slurm/slurmdbd.conf
- modify
/etc/slurm/cgroup.conf
cp /root/slurm-24.05.2/etc/cgroup.conf.example /etc/slurm/cgroup.conf
- send configuration files to other nodes
scp -r /etc/slurm/*.conf root@login01:/etc/slurm/ scp -r /etc/slurm/*.conf root@compute01:/etc/slurm/ scp -r /etc/slurm/*.conf root@compute02:/etc/slurm/
- modify
grant privilege on some directories
(All Nodes)
mkdir /var/spool/slurmd
chown slurm: /var/spool/slurmd
mkdir /var/log/slurm
chown slurm: /var/log/slurm
mkdir /var/spool/slurmctld
chown slurm: /var/spool/slurmctld
chown slurm: /etc/slurm/slurmdbd.conf
chmod 600 /etc/slurm/slurmdbd.conf
- start slurm services on each node
systemctl start slurmdbd
systemctl enable slurmdbd
systemctl start slurmctld
systemctl enable slurmctld
systemctl start slurmd
systemctl enable slurmd
systemctl start slurmd
systemctl enable slurmd
systemctl start slurmd
systemctl enable slurmd
systemctl start slurmd
systemctl enable slurmd
- test slurm check cluster configuration
scontrol show config
check cluster status
sinfo
scontrol show partition
scontrol show node
submit job
srun -N2 hostname
scontrol show jobs
check job status
squeue -a
Install From Binary
(All)
means all type nodes should install this component.
(Mgr)
means only the manager
node should install this component.
(Auth)
means only the Auth
node should install this component.
(Cmp)
means only the Compute
node should install this component.
Typically, there are three nodes are required to run Slurm. 1
Manage(Mgr)
, 1Auth
and NCompute(Cmp)
. but you can choose to install all service in single node. check
Prequisites
- change hostname
(All)
hostnamectl set-hostname (manager|auth|computeXX)
- modify
/etc/hosts
(All)
echo "192.aa.bb.cc (manager|auth|computeXX)" >> /etc/hosts
- disable firewall, selinux, dnsmasq, swap
(All)
. more detail here - NFS Server
(Mgr)
. NFS is used as the default file system for the Slurm accounting database. - [NFS Client]
(All)
. all node should mount the NFS share - Munge
(All)
. The auth/munge plugin will be built if the MUNGE authentication development library is installed. MUNGE is used as the default authentication mechanism. - Database
(Mgr)
. MySQL support for accounting will be built if the MySQL or MariaDB development library is present. A currently supported version of MySQL or MariaDB should be used.
Install Slurm
- create
slurm
user(All)
groupadd -g 1109 slurm useradd -m -c "slurm manager" -d /var/lib/slurm -u 1109 -g slurm -s /bin/bash slurm
Build RPM package
install depeendencies
(Mgr)
yum -y install gcc gcc-c++ readline-devel perl-ExtUtils-MakeMaker pam-devel rpm-build mysql-devel python3
build rpm package
(Mgr)
wget https://download.schedmd.com/slurm/slurm-24.05.2.tar.bz2 -O slurm-24.05.2.tar.bz2 rpmbuild -ta --nodeps slurm-24.05.2.tar.bz2
The rpm files will be installed under the
$(HOME)/rpmbuild
directory of the user building them.send rpm to rest nodes
(Mgr)
ssh root@<$rest_node> "mkdir -p /root/rpmbuild/RPMS/" scp -p $(HOME)/rpmbuild/RPMS/x86_64 root@<$rest_node>:/root/rpmbuild/RPMS/x86_64
install rpm
(Mgr)
ssh root@<$rest_node> "yum localinstall /root/rpmbuild/RPMS/x86_64/slurm-*"
modify configuration file
(Mgr)
cp /etc/slurm/cgroup.conf.example /etc/slurm/cgroup.conf cp /etc/slurm/slurm.conf.example /etc/slurm/slurm.conf cp /etc/slurm/slurmdbd.conf.example /etc/slurm/slurmdbd.conf chmod 600 /etc/slurm/slurmdbd.conf chown slurm: /etc/slurm/slurmdbd.conf
cgroup.conf
doesnt need to change.edit
/etc/slurm/slurm.conf
, you can use this link as a referenceedit
/etc/slurm/slurmdbd.conf
, you can use this link as a reference
Install yum repo directly
install slurm
(All)
yum -y slurm-wlm slurmdbd
modify configuration file
(All)
vim /etc/slurm-llnl/slurm.conf
vim /etc/slurm-llnl/slurmdbd.conf
cgroup.conf
doesnt need to change.edit
/etc/slurm/slurm.conf
, you can use this link as a referenceedit
/etc/slurm/slurmdbd.conf
, you can use this link as a reference
- send configuration
(Mgr)
scp -r /etc/slurm/*.conf root@<$rest_node>:/etc/slurm/ ssh rootroot@<$rest_node> "mkdir /var/spool/slurmd && chown slurm: /var/spool/slurmd" ssh rootroot@<$rest_node> "mkdir /var/log/slurm && chown slurm: /var/log/slurm" ssh rootroot@<$rest_node> "mkdir /var/spool/slurmctld && chown slurm: /var/spool/slurmctld"
- start service
(Mgr)
ssh rootroot@<$rest_node> "systemctl start slurmdbd && systemctl enable slurmdbd" ssh rootroot@<$rest_node> "systemctl start slurmctld && systemctl enable slurmctld"
- start service
(All)
ssh rootroot@<$rest_node> "systemctl start slurmd && systemctl enable slurmd"
Test
- show cluster status
scontrol show config
sinfo
scontrol show partition
scontrol show node
- submit job
srun -N2 hostname
scontrol show jobs
- check job status
squeue -a
Reference:
CheatSheet
Subsections of CheatSheet
Common Environment Variables
Variable | Description |
---|---|
$SLURM_JOB_ID | The Job ID. |
$SLURM_JOBID | Deprecated. Same as $SLURM_JOB_ID |
$SLURM_SUBMIT_HOST | The hostname of the node used for job submission. |
$SLURM_JOB_NODELIST | Contains the definition (list) of the nodes that is assigned to the job. |
$SLURM_NODELIST | Deprecated. Same as SLURM_JOB_NODELIST. |
$SLURM_CPUS_PER_TASK | Number of CPUs per task. |
$SLURM_CPUS_ON_NODE | Number of CPUs on the allocated node. |
$SLURM_JOB_CPUS_PER_NODE | Count of processors available to the job on this node. |
$SLURM_CPUS_PER_GPU | Number of CPUs requested per allocated GPU. |
$SLURM_MEM_PER_CPU | Memory per CPU. Same as –mem-per-cpu . |
$SLURM_MEM_PER_GPU | Memory per GPU. |
$SLURM_MEM_PER_NODE | Memory per node. Same as –mem . |
$SLURM_GPUS | Number of GPUs requested. |
$SLURM_NTASKS | Same as -n, –ntasks. The number of tasks. |
$SLURM_NTASKS_PER_NODE | Number of tasks requested per node. |
$SLURM_NTASKS_PER_SOCKET | Number of tasks requested per socket. |
$SLURM_NTASKS_PER_CORE | Number of tasks requested per core. |
$SLURM_NTASKS_PER_GPU | Number of tasks requested per GPU. |
$SLURM_NPROCS | Same as -n, –ntasks. See $SLURM_NTASKS. |
$SLURM_TASKS_PER_NODE | Number of tasks to be initiated on each node. |
$SLURM_ARRAY_JOB_ID | Job array’s master job ID number. |
$SLURM_ARRAY_TASK_ID | Job array ID (index) number. |
$SLURM_ARRAY_TASK_COUNT | Total number of tasks in a job array. |
$SLURM_ARRAY_TASK_MAX | Job array’s maximum ID (index) number. |
$SLURM_ARRAY_TASK_MIN | Job array’s minimum ID (index) number. |
A full list of environment variables for SLURM can be found by visiting the SLURM page on environment variables.
File Operations
File Distribution
sbcast
is used to transfer a file from local disk to local disk on the nodes allocated to a job. This can be used to effectively use diskless compute nodes or provide improved performance relative to a shared file system.- Feature
distribute file
:Quickly copy files to all compute nodes assigned to the job, avoiding the hassle of manually distributing files. Faster than traditional scp or rsync, especially when distributing to multiple nodes。simplify script
:one command to distribute files to all nodes assigned to the job。imrpove performance
:Improve file distribution speed by parallelizing transfers, especially for large or multiple files。
- Usage
- Alone
sbcast <source_file> <destination_path>
- Embedded in a job script
#!/bin/bash #SBATCH --job-name=example_job #SBATCH --output=example_job.out #SBATCH --error=example_job.err #SBATCH --partition=compute #SBATCH --nodes=4 # Use sbcast to distribute the file to the /tmp directory of each node sbcast data.txt /tmp/data.txt # Run your program using the distributed files srun my_program /tmp/data.txt
- Feature
File Collection
File Redirection When submitting a job, you can use the #SBATCH –output and #SBATCH –error directives to redirect standard output and standard error to specified files.
#SBATCH --output=output.txt #SBATCH --error=error.txt
Or
sbatch -N2 -w "compute[01-02]" -o result/file/path xxx.slurm
Send the destination address manually Using
scp
orrsync
in the job to copy the files from the compute nodes to the submit nodeUsing NFS If a shared file system (such as NFS, Lustre, or GPFS) is configured in the computing cluster, the result files can be written directly to the shared directory. In this way, the result files generated by all nodes are automatically stored in the same location.
Using
sbcast
Submit Jobs
3 Type Jobs
srun
is used to submit a job for execution or initiate job steps in real time.- Example
- run shell
srun -N2 bin/hostname
- run script
srun -N1 test.sh
- Example
sbatch
is used to submit a job script for later execution. The script will typically contain one or more srun commands to launch parallel tasks.- submit a batch job
sbatch -N2 -w "compute[01-02]" -o job.stdout /data/jobs/batch-job.slurm
- submit a parallel task to process differnt data partition
sbatch /data/jobs/parallel.slurm
salloc
is used to allocate resources for a job in real time. Typically this is used to allocate resources and spawn a shell. The shell is then used to execute srun commands to launch parallel tasks.- Example
- allocate resources (more like create an virtual machine)
This command will create a job which allocates 2 nodes and spawn a bash shell on each node. and you can execute srun commands in that environment. After your computing task is finsihs, remember to shutdown your job.salloc -N2 bash
when you exit the job, the resources will be released.scancel <$job_id>
- Example
MPI Libs
Subsections of MPI Libs
Test Intel MPI Jobs
在SLURM集群中使用MPI(Message Passing Interface)进行并行计算,通常需要以下几个步骤:
1. 安装MPI库
确保你的集群节点已经安装了MPI库,常见的MPI实现包括:
- OpenMPI
- Intel MPI
- MPICH 可以通过以下命令检查集群是否安装了MPI:
mpicc --version # 检查MPI编译器
mpirun --version # 检查MPI运行时环境
2. 测试MPI性能
mpirun -n 2 IMB-MPI1 pingpong
3. 编译MPI程序
你可以用mpicc(C语言)或mpic++(C++语言)来编译MPI程序。例如:
以下是一个简单的MPI “Hello, World!” 示例程序,假设文件名为 hello_mpi.c
, 还有一个进行矩阵计算的示例程序,文件名为dot_product.c
,任意挑选一个即可:
#include <stdio.h>
#include <mpi.h>
int main(int argc, char *argv[]) {
int rank, size;
// 初始化MPI环境
MPI_Init(&argc, &argv);
// 获取当前进程的rank和总进程数
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);
// 输出进程的信息
printf("Hello, World! I am process %d out of %d processes.\n", rank, size);
// 退出MPI环境
MPI_Finalize();
return 0;
}
#include <stdio.h>
#include <stdlib.h>
#include <mpi.h>
#define N 8 // 向量大小
// 计算向量的局部点积
double compute_local_dot_product(double *A, double *B, int start, int end) {
double local_dot = 0.0;
for (int i = start; i < end; i++) {
local_dot += A[i] * B[i];
}
return local_dot;
}
void print_vector(double *Vector) {
for (int i = 0; i < N; i++) {
printf("%f ", Vector[i]);
}
printf("\n");
}
int main(int argc, char *argv[]) {
int rank, size;
// 初始化MPI环境
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);
// 向量A和B
double A[N], B[N];
// 进程0初始化向量A和B
if (rank == 0) {
for (int i = 0; i < N; i++) {
A[i] = i + 1; // 示例数据
B[i] = (i + 1) * 2; // 示例数据
}
}
// 广播向量A和B到所有进程
MPI_Bcast(A, N, MPI_DOUBLE, 0, MPI_COMM_WORLD);
MPI_Bcast(B, N, MPI_DOUBLE, 0, MPI_COMM_WORLD);
// 每个进程计算自己负责的部分
int local_n = N / size; // 每个进程处理的元素个数
int start = rank * local_n;
int end = (rank + 1) * local_n;
// 如果是最后一个进程,确保处理所有剩余的元素(处理N % size)
if (rank == size - 1) {
end = N;
}
double local_dot_product = compute_local_dot_product(A, B, start, end);
// 使用MPI_Reduce将所有进程的局部点积结果汇总到进程0
double global_dot_product = 0.0;
MPI_Reduce(&local_dot_product, &global_dot_product, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
// 进程0输出最终结果
if (rank == 0) {
printf("Vector A is\n");
print_vector(A);
printf("Vector B is\n");
print_vector(B);
printf("Dot Product of A and B: %f\n", global_dot_product);
}
// 结束MPI环境
MPI_Finalize();
return 0;
}
3. 创建Slurm作业脚本
创建一个SLURM作业脚本来运行该MPI程序。以下是一个基本的SLURM作业脚本,假设文件名为 mpi_test.slurm
:
#!/bin/bash
#SBATCH --job-name=mpi_job # Job name
#SBATCH --nodes=2 # Number of nodes to use
#SBATCH --ntasks-per-node=1 # Number of tasks per node
#SBATCH --time=00:10:00 # Time limit
#SBATCH --output=mpi_test_output_%j.log # Standard output file
#SBATCH --error=mpi_test_output_%j.err # Standard error file
# Manually set Intel OneAPI MPI and Compiler environment
export I_MPI_PMI=pmi2
export I_MPI_PMI_LIBRARY=/usr/lib/x86_64-linux-gnu/slurm/mpi_pmi2.so
export I_MPI_ROOT=/opt/intel/oneapi/mpi/2021.14
export INTEL_COMPILER_ROOT=/opt/intel/oneapi/compiler/2025.0
export PATH=$I_MPI_ROOT/bin:$INTEL_COMPILER_ROOT/bin:$PATH
export LD_LIBRARY_PATH=$I_MPI_ROOT/lib:$INTEL_COMPILER_ROOT/lib:$LD_LIBRARY_PATH
export MANPATH=$I_MPI_ROOT/man:$INTEL_COMPILER_ROOT/man:$MANPATH
# Compile the MPI program
icx-cc -I$I_MPI_ROOT/include hello_mpi.c -o hello_mpi -L$I_MPI_ROOT/lib -lmpi
# Run the MPI job
mpirun -np 2 ./hello_mpi
#!/bin/bash
#SBATCH --job-name=mpi_job # Job name
#SBATCH --nodes=2 # Number of nodes to use
#SBATCH --ntasks-per-node=1 # Number of tasks per node
#SBATCH --time=00:10:00 # Time limit
#SBATCH --output=mpi_test_output_%j.log # Standard output file
#SBATCH --error=mpi_test_output_%j.err # Standard error file
# Manually set Intel OneAPI MPI and Compiler environment
export I_MPI_PMI=pmi2
export I_MPI_PMI_LIBRARY=/usr/lib/x86_64-linux-gnu/slurm/mpi_pmi2.so
export I_MPI_ROOT=/opt/intel/oneapi/mpi/2021.14
export INTEL_COMPILER_ROOT=/opt/intel/oneapi/compiler/2025.0
export PATH=$I_MPI_ROOT/bin:$INTEL_COMPILER_ROOT/bin:$PATH
export LD_LIBRARY_PATH=$I_MPI_ROOT/lib:$INTEL_COMPILER_ROOT/lib:$LD_LIBRARY_PATH
export MANPATH=$I_MPI_ROOT/man:$INTEL_COMPILER_ROOT/man:$MANPATH
# Compile the MPI program
icx-cc -I$I_MPI_ROOT/include dot_product.c -o dot_product -L$I_MPI_ROOT/lib -lmpi
# Run the MPI job
mpirun -np 2 ./dot_product
4. 编译MPI程序
在运行作业之前,你需要编译MPI程序。在集群上使用mpicc来编译该程序。假设你将程序保存在 hello_mpi.c
文件中,使用以下命令进行编译:
mpicc -o hello_mpi hello_mpi.c
mpicc -o dot_product dot_product.c
5. 提交Slurm作业
保存上述作业脚本(mpi_test.slurm
)并使用以下命令提交作业:
sbatch mpi_test.slurm
6. 查看作业状态
你可以使用以下命令查看作业的状态:
squeue -u <your_username>
7. 检查输出
作业完成后,输出将保存在你作业脚本中指定的文件中(例如 mpi_test_output_<job_id>.log
)。你可以使用 cat 或任何文本编辑器查看输出:
cat mpi_test_output_*.log
示例输出 如果一切正常,输出会类似于:
Hello, World! I am process 0 out of 2 processes.
Hello, World! I am process 1 out of 2 processes.
Result Matrix C (A * B):
14 8 2 -4
20 10 0 -10
-1189958655 1552515295 21949 -1552471397
0 0 0 0
Test Open MPI Jobs
在SLURM集群中使用MPI(Message Passing Interface)进行并行计算,通常需要以下几个步骤:
1. 安装MPI库
确保你的集群节点已经安装了MPI库,常见的MPI实现包括:
- OpenMPI
- Intel MPI
- MPICH 可以通过以下命令检查集群是否安装了MPI:
mpicc --version # 检查MPI编译器
mpirun --version # 检查MPI运行时环境
2. 编译MPI程序
你可以用mpicc(C语言)或mpic++(C++语言)来编译MPI程序。例如:
以下是一个简单的MPI “Hello, World!” 示例程序,假设文件名为 hello_mpi.c
, 还有一个进行矩阵计算的示例程序,文件名为dot_product.c
,任意挑选一个即可:
#include <stdio.h>
#include <mpi.h>
int main(int argc, char *argv[]) {
int rank, size;
// 初始化MPI环境
MPI_Init(&argc, &argv);
// 获取当前进程的rank和总进程数
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);
// 输出进程的信息
printf("Hello, World! I am process %d out of %d processes.\n", rank, size);
// 退出MPI环境
MPI_Finalize();
return 0;
}
#include <stdio.h>
#include <stdlib.h>
#include <mpi.h>
#define N 8 // 向量大小
// 计算向量的局部点积
double compute_local_dot_product(double *A, double *B, int start, int end) {
double local_dot = 0.0;
for (int i = start; i < end; i++) {
local_dot += A[i] * B[i];
}
return local_dot;
}
void print_vector(double *Vector) {
for (int i = 0; i < N; i++) {
printf("%f ", Vector[i]);
}
printf("\n");
}
int main(int argc, char *argv[]) {
int rank, size;
// 初始化MPI环境
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);
// 向量A和B
double A[N], B[N];
// 进程0初始化向量A和B
if (rank == 0) {
for (int i = 0; i < N; i++) {
A[i] = i + 1; // 示例数据
B[i] = (i + 1) * 2; // 示例数据
}
}
// 广播向量A和B到所有进程
MPI_Bcast(A, N, MPI_DOUBLE, 0, MPI_COMM_WORLD);
MPI_Bcast(B, N, MPI_DOUBLE, 0, MPI_COMM_WORLD);
// 每个进程计算自己负责的部分
int local_n = N / size; // 每个进程处理的元素个数
int start = rank * local_n;
int end = (rank + 1) * local_n;
// 如果是最后一个进程,确保处理所有剩余的元素(处理N % size)
if (rank == size - 1) {
end = N;
}
double local_dot_product = compute_local_dot_product(A, B, start, end);
// 使用MPI_Reduce将所有进程的局部点积结果汇总到进程0
double global_dot_product = 0.0;
MPI_Reduce(&local_dot_product, &global_dot_product, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
// 进程0输出最终结果
if (rank == 0) {
printf("Vector A is\n");
print_vector(A);
printf("Vector B is\n");
print_vector(B);
printf("Dot Product of A and B: %f\n", global_dot_product);
}
// 结束MPI环境
MPI_Finalize();
return 0;
}
3. 创建Slurm作业脚本
创建一个SLURM作业脚本来运行该MPI程序。以下是一个基本的SLURM作业脚本,假设文件名为 mpi_test.slurm
:
#!/bin/bash
#SBATCH --job-name=mpi_test # 作业名称
#SBATCH --nodes=2 # 请求节点数
#SBATCH --ntasks-per-node=1 # 每个节点上的任务数
#SBATCH --time=00:10:00 # 最大运行时间
#SBATCH --output=mpi_test_output_%j.log # 输出日志文件
# 加载MPI模块(如果使用模块化环境)
module load openmpi
# 运行MPI程序
mpirun --allow-run-as-root -np 2 ./hello_mpi
#!/bin/bash
#SBATCH --job-name=mpi_test # 作业名称
#SBATCH --nodes=2 # 请求节点数
#SBATCH --ntasks-per-node=1 # 每个节点上的任务数
#SBATCH --time=00:10:00 # 最大运行时间
#SBATCH --output=mpi_test_output_%j.log # 输出日志文件
# 加载MPI模块(如果使用模块化环境)
module load openmpi
# 运行MPI程序
mpirun --allow-run-as-root -np 2 ./dot_product
4. 编译MPI程序
在运行作业之前,你需要编译MPI程序。在集群上使用mpicc来编译该程序。假设你将程序保存在 hello_mpi.c
文件中,使用以下命令进行编译:
mpicc -o hello_mpi hello_mpi.c
mpicc -o dot_product dot_product.c
5. 提交Slurm作业
保存上述作业脚本(mpi_test.slurm
)并使用以下命令提交作业:
sbatch mpi_test.slurm
6. 查看作业状态
你可以使用以下命令查看作业的状态:
squeue -u <your_username>
7. 检查输出
作业完成后,输出将保存在你作业脚本中指定的文件中(例如 mpi_test_output_<job_id>.log
)。你可以使用 cat 或任何文本编辑器查看输出:
cat mpi_test_output_*.log
示例输出 如果一切正常,输出会类似于:
Hello, World! I am process 0 out of 2 processes.
Hello, World! I am process 1 out of 2 processes.
Result Matrix C (A * B):
14 8 2 -4
20 10 0 -10
-1189958655 1552515295 21949 -1552471397
0 0 0 0
Try OpenSCOW
What is SCOW?
SCOW is a HPC cluster management system built by PKU.
SCOW used four virtual machines to run slurm cluster. It is a good choice for you to learn how to use slurm.
You should check https://pkuhpc.github.io/OpenSCOW/docs/hpccluster, it works well.