👨‍💻Schedmd Slurm

The Slurm Workload Manager, formerly known as Simple Linux Utility for Resource Management (SLURM), or simply Slurm, is a free and open-source job scheduler for Linux and Unix-like kernels, used by many of the world’s supercomputers and computer clusters.

It provides three key functions:

  • allocating exclusive and/or non-exclusive access to resources (computer nodes) to users for some duration of time so they can perform work,
  • providing a framework for starting, executing, and monitoring work, typically a parallel job such as Message Passing Interface (MPI) on a set of allocated nodes, and
  • arbitrating contention for resources by managing a queue of pending jobs.

func1 func1

Content

Aug 7, 2024

Subsections of 👨‍💻Schedmd Slurm

Build & Install

Aug 7, 2024

Subsections of Build & Install

Install On Debian

Cluster Setting

  • 1 Manager
  • 1 Login Node
  • 2 Compute nodes
hostnameIProlequota
manage01 (slurmctld, slurmdbd)192.168.56.115manager2C4G
login01 (login)192.168.56.116login2C4G
compute01 (slurmd)192.168.56.117compute2C4G
compute02 (slurmd)192.168.56.118compute2C4G

Software Version:

softwareversion
osDebian 12 bookworm
slurm24.05.2

Important

when you see (All Nodes), you need to run the following command on all nodes

when you see (Manager Node), you only need to run the following command on manager node

when you see (Login Node), you only need to run the following command on login node

Prepare Steps (All Nodes)

  1. Modify the /etc/apt/sources.list file Using tuna mirror
cat > /etc/apt/sources.list << EOF
deb https://mirrors.tuna.tsinghua.edu.cn/debian/ bookworm main contrib non-free non-free-firmware
deb-src https://mirrors.tuna.tsinghua.edu.cn/debian/ bookworm main contrib non-free non-free-firmware

deb https://mirrors.tuna.tsinghua.edu.cn/debian/ bookworm-updates main contrib non-free non-free-firmware
deb-src https://mirrors.tuna.tsinghua.edu.cn/debian/ bookworm-updates main contrib non-free non-free-firmware

deb https://mirrors.tuna.tsinghua.edu.cn/debian/ bookworm-backports main contrib non-free non-free-firmware
deb-src https://mirrors.tuna.tsinghua.edu.cn/debian/ bookworm-backports main contrib non-free non-free-firmware

deb https://mirrors.tuna.tsinghua.edu.cn/debian-security/ bookworm-security main contrib non-free non-free-firmware
deb-src https://mirrors.tuna.tsinghua.edu.cn/debian-security/ bookworm-security main contrib non-free non-free-firmware
EOF
if you cannot get ipv4 address

Modify the /etc/network/interfaces

allow-hotplug enps08
iface enps08 inet dhcp

restart the network

systemctl restart networking
  1. Update apt cache
apt clean all && apt update
  1. Set hostname on each node
Node:
hostnamectl set-hostname manage01
hostnamectl set-hostname login01
hostnamectl set-hostname compute01
hostnamectl set-hostname compute02
  1. Set hosts file
cat >> /etc/hosts << EOF
192.168.56.115 manage01
192.168.56.116 login01
192.168.56.117 compute01
192.168.56.118 compute02
EOF
  1. Disable firewall
systemctl stop nftables && systemctl disable nftables
  1. Install packages ntpdate
apt-get -y install ntpdate
  1. Sync server time
ln -sf /usr/share/zoneinfo/Asia/Shanghai /etc/localtime
echo 'Asia/Shanghai' >/etc/timezone
ntpdate time.windows.com
  1. Add cron job to sync time
crontab -e
*/5 * * * * /usr/sbin/ntpdate time.windows.com
  1. Create ssh key pair on each node
ssh-keygen -t rsa -b 4096 -C $HOSTNAME
  1. Test ssh login other nodes without password
Node:
ssh-copy-id -i ~/.ssh/id_rsa.pub root@login01
ssh-copy-id -i ~/.ssh/id_rsa.pub root@compute01
ssh-copy-id -i ~/.ssh/id_rsa.pub root@compute02
ssh-copy-id -i ~/.ssh/id_rsa.pub root@manage01
ssh-copy-id -i ~/.ssh/id_rsa.pub root@compute01
ssh-copy-id -i ~/.ssh/id_rsa.pub root@compute02

Install Components

  1. Install NFS server (Manager Node)

there are many ways to install NFS server

create shared folder

mkdir /data
chmod 755 /data

modify vim /etc/exports

/data *(rw,sync,insecure,no_subtree_check,no_root_squash)

start nfs server

systemctl start rpcbind 
systemctl start nfs-server 

systemctl enable rpcbind 
systemctl enable nfs-server

check nfs server

showmount -e localhost

# Output
Export list for localhost:
/data *
  1. Install munge service
  • add user munge (All Nodes)
groupadd -g 1108 munge
useradd -m -c "Munge Uid 'N' Gid Emporium" -d /var/lib/munge -u 1108 -g munge -s /sbin/nologin munge
  • Install rng-tools-debian (Manager Nodes)
apt-get install -y rng-tools-debian
# modify service script
vim /usr/lib/systemd/system/rngd.service
[Service]
ExecStart=/usr/sbin/rngd -f -r /dev/urandom
systemctl daemon-reload
systemctl start rngd
systemctl enable rngd
apt-get install -y libmunge-dev libmunge2 munge
  • generate secret key (Manager Nodes)
dd if=/dev/urandom bs=1 count=1024 > /etc/munge/munge.key
  • copy munge.key from manager node to the rest node (All Nodes)
scp -p /etc/munge/munge.key root@login01:/etc/munge/
scp -p /etc/munge/munge.key root@compute01:/etc/munge/
scp -p /etc/munge/munge.key root@compute02:/etc/munge/
  • grant privilege on munge.key (All Nodes)
chown munge: /etc/munge/munge.key
chmod 400 /etc/munge/munge.key

systemctl start munge
systemctl enable munge

Using systemctl status munge to check if the service is running

  • test munge
munge -n | ssh compute01 unmunge
  1. Install Mariadb (Manager Nodes)
apt-get install -y mariadb-server
  • create database and user
systemctl start mariadb
systemctl enable mariadb

ROOT_PASS=$(tr -dc A-Za-z0-9 </dev/urandom | head -c 16) 
mysql -e "CREATE USER root IDENTIFIED BY '${ROOT_PASS}'"
mysql -uroot -p$ROOT_PASS -e 'create database slurm_acct_db'
  • create user slurm,and grant all privileges on database slurm_acct_db
mysql -uroot -p$ROOT_PASS
create user slurm;

grant all on slurm_acct_db.* TO 'slurm'@'localhost' identified by '123456' with grant option;

flush privileges;
  • create Slurm user
groupadd -g 1109 slurm
useradd -m -c "Slurm manager" -d /var/lib/slurm -u 1109 -g slurm -s /bin/bash slurm

Install Slurm (All Nodes)

  • Install basic Debian package build requirements:
apt-get install -y build-essential fakeroot devscripts equivs
  • Unpack the distributed tarball:
wget https://download.schedmd.com/slurm/slurm-24.05.2.tar.bz2 -O slurm-24.05.2.tar.bz2 &&
tar -xaf slurm*tar.bz2
  • cd to the directory containing the Slurm source:
cd slurm-24.05.2 &&   mkdir -p /etc/slurm && ./configure 
  • compile slurm
make install
  • modify configuration files (Manager Nodes)

    cp /root/slurm-24.05.2/etc/slurm.conf.example /etc/slurm/slurm.conf
    vim /etc/slurm/slurm.conf

    focus on these options:

    SlurmctldHost=manage
    
    AccountingStorageEnforce=associations,limits,qos
    AccountingStorageHost=manage
    AccountingStoragePass=/var/run/munge/munge.socket.2
    AccountingStoragePort=6819  
    AccountingStorageType=accounting_storage/slurmdbd  
    
    JobCompHost=localhost
    JobCompLoc=slurm_acct_db
    JobCompPass=123456
    JobCompPort=3306
    JobCompType=jobcomp/mysql
    JobCompUser=slurm
    JobContainerType=job_container/none
    JobAcctGatherType=jobacct_gather/linux
    cp /root/slurm-24.05.2/etc/slurmdbd.conf.example /etc/slurm/slurmdbd.conf
    vim /etc/slurm/slurmdbd.conf
    • modify /etc/slurm/cgroup.conf
    cp /root/slurm-24.05.2/etc/cgroup.conf.example /etc/slurm/cgroup.conf
    • send configuration files to other nodes
    scp -r /etc/slurm/*.conf  root@login01:/etc/slurm/
    scp -r /etc/slurm/*.conf  root@compute01:/etc/slurm/
    scp -r /etc/slurm/*.conf  root@compute02:/etc/slurm/
  • grant privilege on some directories (All Nodes)

mkdir /var/spool/slurmd
chown slurm: /var/spool/slurmd
mkdir /var/log/slurm
chown slurm: /var/log/slurm

mkdir /var/spool/slurmctld
chown slurm: /var/spool/slurmctld

chown slurm: /etc/slurm/slurmdbd.conf
chmod 600 /etc/slurm/slurmdbd.conf
  • start slurm services on each node
Node:
systemctl start slurmdbd
systemctl enable slurmdbd

systemctl start slurmctld
systemctl enable slurmctld

systemctl start slurmd
systemctl enable slurmd
Using `systemctl status xxxx` to check if the `xxxx` service is running
Example slurmdbd.server
```text
# vim /usr/lib/systemd/system/slurmdbd.service


[Unit]
Description=Slurm DBD accounting daemon
After=network-online.target remote-fs.target munge.service mysql.service mysqld.service mariadb.service sssd.service
Wants=network-online.target
ConditionPathExists=/etc/slurm/slurmdbd.conf

[Service]
Type=simple
EnvironmentFile=-/etc/sysconfig/slurmdbd
EnvironmentFile=-/etc/default/slurmdbd
User=slurm
Group=slurm
RuntimeDirectory=slurmdbd
RuntimeDirectoryMode=0755
ExecStart=/usr/local/sbin/slurmdbd -D -s $SLURMDBD_OPTIONS
ExecReload=/bin/kill -HUP $MAINPID
LimitNOFILE=65536


# Uncomment the following lines to disable logging through journald.
# NOTE: It may be preferable to set these through an override file instead.
#StandardOutput=null
#StandardError=null

[Install]
WantedBy=multi-user.target
```
Example slumctld.server
```text
# vim /usr/lib/systemd/system/slurmctld.service


[Unit]
Description=Slurm controller daemon
After=network-online.target remote-fs.target munge.service sssd.service
Wants=network-online.target
ConditionPathExists=/etc/slurm/slurm.conf

[Service]
Type=notify
EnvironmentFile=-/etc/sysconfig/slurmctld
EnvironmentFile=-/etc/default/slurmctld
User=slurm
Group=slurm
RuntimeDirectory=slurmctld
RuntimeDirectoryMode=0755
ExecStart=/usr/local/sbin/slurmctld --systemd $SLURMCTLD_OPTIONS
ExecReload=/bin/kill -HUP $MAINPID
LimitNOFILE=65536


# Uncomment the following lines to disable logging through journald.
# NOTE: It may be preferable to set these through an override file instead.
#StandardOutput=null
#StandardError=null

[Install]
WantedBy=multi-user.target
```
Example slumd.server
```text
# vim /usr/lib/systemd/system/slurmd.service


[Unit]
Description=Slurm node daemon
After=munge.service network-online.target remote-fs.target sssd.service
Wants=network-online.target
#ConditionPathExists=/etc/slurm/slurm.conf

[Service]
Type=notify
EnvironmentFile=-/etc/sysconfig/slurmd
EnvironmentFile=-/etc/default/slurmd
RuntimeDirectory=slurm
RuntimeDirectoryMode=0755
ExecStart=/usr/local/sbin/slurmd --systemd $SLURMD_OPTIONS
ExecReload=/bin/kill -HUP $MAINPID
KillMode=process
LimitNOFILE=131072
LimitMEMLOCK=infinity
LimitSTACK=infinity
Delegate=yes


# Uncomment the following lines to disable logging through journald.
# NOTE: It may be preferable to set these through an override file instead.
#StandardOutput=null
#StandardError=null

[Install]
WantedBy=multi-user.target
```
systemctl start slurmd
systemctl enable slurmd
Using `systemctl status slurmd` to check if the `slurmd` service is running
systemctl start slurmd
systemctl enable slurmd
Using `systemctl status slurmd` to check if the `slurmd` service is running
systemctl start slurmd
systemctl enable slurmd
Using `systemctl status slurmd` to check if the `slurmd` service is running

Test Your Slurm Cluster (Login Node)

  • check cluster configuration
scontrol show config
  • check cluster status
sinfo
scontrol show partition
scontrol show node
  • submit job
srun -N2 hostname
scontrol show jobs
  • check job status
check job status
squeue -a
Aug 7, 2024

Install From Binary

Important

(All Nodes) means all type nodes should install this component.

(Manager Node) means only the manager node should install this component.

(Login Node) means only the Auth node should install this component.

(Cmp) means only the Compute node should install this component.

Typically, there are three nodes are required to run Slurm.

1 Manage(Manager Node), 1 Login Node and N Compute(Cmp).

but you can choose to install all service in single node. check

Prequisites

  1. change hostname (All Nodes)
    hostnamectl set-hostname (manager|auth|computeXX)
  2. modify /etc/hosts (All Nodes)
    echo "192.aa.bb.cc (manager|auth|computeXX)" >> /etc/hosts
  3. disable firewall, selinux, dnsmasq, swap (All Nodes). more detail here
  4. NFS Server (Manager Node). NFS is used as the default file system for the Slurm accounting database.
  5. [NFS Client] (All Nodes). all node should mount the NFS share
    Install NFS Client
    mount <$nfs_server>:/data /data -o proto=tcp -o nolock
  6. Munge (All Nodes). The auth/munge plugin will be built if the MUNGE authentication development library is installed. MUNGE is used as the default authentication mechanism.
    Install Munge

    All node need to have the munge user and group.

    groupadd -g 1108 munge
    useradd -m -c "Munge Uid 'N' Gid Emporium" -d /var/lib/munge -u 1108 -g munge -s /sbin/nologin munge
    yum install epel-release -y
    yum install munge munge-libs munge-devel -y

    Create global secret key

    /usr/sbin/create-munge-key -r
    dd if=/dev/urandom bs=1 count=1024 > /etc/munge/munge.key

    sync secret to the rest of nodes

    scp -p /etc/munge/munge.key root@<$rest_node>:/etc/munge/
    ssh root@<$rest_node> "chown munge: /etc/munge/munge.key && chmod 400 /etc/munge/munge.key"
    ssh root@<$rest_node> "systemctl start munge && systemctl enable munge"

    test munge if it works

    munge -n | unmunge
  7. Database (Manager Node). MySQL support for accounting will be built if the MySQL or MariaDB development library is present. A currently supported version of MySQL or MariaDB should be used.
    Install MariaDB

    install mariadb

    yum -y install mariadb-server
    systemctl start mariadb && systemctl enable mariadb
    ROOT_PASS=$(tr -dc A-Za-z0-9 </dev/urandom | head -c 16) 
    mysql -e "CREATE USER root IDENTIFIED BY '${ROOT_PASS}'"

    login mysql

    mysql -u root -p${ROOT_PASS}
    create database slurm_acct_db;
    create user slurm;
    grant all on slurm_acct_db.* TO 'slurm'@'localhost' identified by '123456' with grant option;
    flush privileges;
    quit

Install Slurm

  1. create slurm user (All Nodes)
    groupadd -g 1109 slurm
    useradd -m -c "slurm manager" -d /var/lib/slurm -u 1109 -g slurm -s /bin/bash slurm
Install Slurm from

Build RPM package

  1. install depeendencies (Manager Node)

    yum -y install gcc gcc-c++ readline-devel perl-ExtUtils-MakeMaker pam-devel rpm-build mysql-devel python3
  2. build rpm package (Manager Node)

    wget https://download.schedmd.com/slurm/slurm-24.05.2.tar.bz2 -O slurm-24.05.2.tar.bz2
    rpmbuild -ta --nodeps slurm-24.05.2.tar.bz2

    The rpm files will be installed under the $(HOME)/rpmbuild directory of the user building them.

  3. send rpm to rest nodes (Manager Node)

    ssh root@<$rest_node> "mkdir -p /root/rpmbuild/RPMS/"
    scp -p $(HOME)/rpmbuild/RPMS/x86_64 root@<$rest_node>:/root/rpmbuild/RPMS/x86_64
  4. install rpm (Manager Node)

    ssh root@<$rest_node> "yum localinstall /root/rpmbuild/RPMS/x86_64/slurm-*"
  5. modify configuration file (Manager Node)

    cp /etc/slurm/cgroup.conf.example /etc/slurm/cgroup.conf
    cp /etc/slurm/slurm.conf.example /etc/slurm/slurm.conf
    cp /etc/slurm/slurmdbd.conf.example /etc/slurm/slurmdbd.conf
    chmod 600 /etc/slurm/slurmdbd.conf
    chown slurm: /etc/slurm/slurmdbd.conf

    cgroup.conf doesnt need to change.

    edit /etc/slurm/slurm.conf, you can use this link as a reference

    edit /etc/slurm/slurmdbd.conf, you can use this link as a reference

Install yum repo directly

  1. install slurm (All Nodes)

    yum -y slurm-wlm slurmdbd
  2. modify configuration file (All Nodes)

    vim /etc/slurm-llnl/slurm.conf
    vim /etc/slurm-llnl/slurmdbd.conf

    cgroup.conf doesnt need to change.

    edit /etc/slurm/slurm.conf, you can use this link as a reference

    edit /etc/slurm/slurmdbd.conf, you can use this link as a reference

  1. send configuration (Manager Node)
     scp -r /etc/slurm/*.conf  root@<$rest_node>:/etc/slurm/
     ssh rootroot@<$rest_node> "mkdir /var/spool/slurmd && chown slurm: /var/spool/slurmd"
     ssh rootroot@<$rest_node> "mkdir /var/log/slurm && chown slurm: /var/log/slurm"
     ssh rootroot@<$rest_node> "mkdir /var/spool/slurmctld && chown slurm: /var/spool/slurmctld"
  2. start service (Manager Node)
    ssh rootroot@<$rest_node> "systemctl start slurmdbd && systemctl enable slurmdbd"
    ssh rootroot@<$rest_node> "systemctl start slurmctld && systemctl enable slurmctld"
  3. start service (All Nodes)
    ssh rootroot@<$rest_node> "systemctl start slurmd && systemctl enable slurmd"

Test

  1. show cluster status
scontrol show config
sinfo
scontrol show partition
scontrol show node
  1. submit job
srun -N2 hostname
scontrol show jobs
  1. check job status
squeue -a

Reference:

  1. https://slurm.schedmd.com/documentation.html
  2. https://wiki.fysik.dtu.dk/Niflheim_system/Slurm_installation/
  3. https://github.com/Artlands/Install-Slurm
Aug 7, 2024

Install From Helm Chart

Despite the complex binary installation, helm chart is a better way to install slurm.

Source code could be found from https://github.com/AaronYang0628/slurm-on-k8s

Prequisites

  1. Kubernetes has installed, if not check 🔗link
  2. Helm binary has installed, if not check 🔗link

Installation

  1. get helm repo and update

    helm repo add ay-helm-mirror https://aaronyang0628.github.io/helm-chart-mirror/charts
  2. install slurm chart

    # wget -O slurm.values.yaml https://raw.githubusercontent.com/AaronYang0628/slurm-on-k8s/refs/heads/main/chart/values.yaml
    helm install slurm ay-helm-mirror/chart -f slurm.values.yaml --version 1.0.10

    Or you can get template values.yaml from https://raw.githubusercontent.com/AaronYang0628/helm-chart-mirror/refs/heads/main/templates/slurm/slurm.values.yaml

  3. check chart status

    helm -n slurm list
Aug 7, 2024

Install From K8s Operator

Despite the complex binary installation, using k8s operator is a better way to install slurm.

Source code could be found from https://github.com/AaronYang0628/slurm-on-k8s

Prequisites

  1. Kubernetes has installed, if not check 🔗link
  2. Helm binary has installed, if not check 🔗link

Installation

  1. deploy slurm operator

    kubectl apply -f https://raw.githubusercontent.com/AaronYang0628/helm-chart-mirror/refs/heads/main/templates/slurm/operator_install.yaml
    Expectd Output
    [root@ay-zj-ecs operator]# kubectl apply -f https://raw.githubusercontent.com/AaronYang0628/helm-chart-mirror/refs/heads/main/templates/slurm/operator_install.yaml
    namespace/slurm created
    customresourcedefinition.apiextensions.k8s.io/slurmdeployments.slurm.ay.dev created
    serviceaccount/slurm-operator-controller-manager created
    role.rbac.authorization.k8s.io/slurm-operator-leader-election-role created
    clusterrole.rbac.authorization.k8s.io/slurm-operator-manager-role created
    clusterrole.rbac.authorization.k8s.io/slurm-operator-metrics-auth-role created
    clusterrole.rbac.authorization.k8s.io/slurm-operator-metrics-reader created
    clusterrole.rbac.authorization.k8s.io/slurm-operator-slurmdeployment-admin-role created
    clusterrole.rbac.authorization.k8s.io/slurm-operator-slurmdeployment-editor-role created
    clusterrole.rbac.authorization.k8s.io/slurm-operator-slurmdeployment-viewer-role created
    rolebinding.rbac.authorization.k8s.io/slurm-operator-leader-election-rolebinding created
    clusterrolebinding.rbac.authorization.k8s.io/slurm-operator-manager-rolebinding created
    clusterrolebinding.rbac.authorization.k8s.io/slurm-operator-metrics-auth-rolebinding created
    service/slurm-operator-controller-manager-metrics-service created
    deployment.apps/slurm-operator-controller-manager created
  2. check operator status

    kubectl -n slurm get pod
    Expectd Output
    [root@ay-zj-ecs operator]# kubectl -n slurm get pod
    NAME                                READY   STATUS    RESTARTS   AGE
    slurm-operator-controller-manager   1/1     Running   0          27s
  3. apply CRD slurmdeployment

    kubectl apply -f https://raw.githubusercontent.com/AaronYang0628/helm-chart-mirror/refs/heads/main/templates/slurm/slurmdeployment.zj.values.yaml
    Expectd Output
    [root@ay-zj-ecs operator]# kubectl apply -f https://raw.githubusercontent.com/AaronYang0628/helm-chart-mirror/refs/heads/main/templates/slurm/slurmdeployment.zj.values.yaml
    slurmdeployment.slurm.ay.dev/lensing created
  4. check operator status

    kubectl get slurmdeployment
    kubectl -n slurm logs -f deploy/slurm-operator-controller-manager
    # kubectl get slurmdep
    # kubectl -n test get pods
    Expectd Output
    [root@ay-zj-ecs ~]# kubectl get slurmdep -w
    NAME      CPU   GPU   LOGIN   CTLD   DBD   DBSVC   JOB COMMAND                     STATUS
    lensing   0/1   0/0   0/1     0/1    0/1   0/1     sh -c srun -N 2 /bin/hostname   
    lensing   1/2   0/0   1/1     1/1    1/1   1/1     sh -c srun -N 2 /bin/hostname   
    lensing   2/2   0/0   1/1     1/1    1/1   1/1     sh -c srun -N 2 /bin/hostname   
  5. upgrade slurmdep

    kubectl edit slurmdep lensing
    # set SlurmCPU.replicas = 3
    Expectd Output
    [root@ay-zj-ecs ~]# kubectl edit slurmdep lensing
    slurmdeployment.slurm.ay.dev/lensing edited
    
    [root@ay-zj-ecs ~]# kubectl get slurmdep -w
    NAME      CPU   GPU   LOGIN   CTLD   DBD   DBSVC   JOB COMMAND                     STATUS
    lensing   2/2   0/0   1/1     1/1    1/1   1/1     sh -c srun -N 2 /bin/hostname   
    lensing   2/3   0/0   1/1     1/1    1/1   1/1     sh -c srun -N 2 /bin/hostname   
    lensing   3/3   0/0   1/1     1/1    1/1   1/1     sh -c srun -N 2 /bin/hostname   
Aug 7, 2024

Try OpenSCOW

What is SCOW?

SCOW is a HPC cluster management system built by PKU.

SCOW used four virtual machines to run slurm cluster. It is a good choice for you to learn how to use slurm.

You should check https://pkuhpc.github.io/OpenSCOW/docs/hpccluster, it works well.

Aug 7, 2024

Subsections of CheatSheet

Common Environment Variables

VariableDescription
$SLURM_JOB_IDThe Job ID.
$SLURM_JOBIDDeprecated. Same as $SLURM_JOB_ID
$SLURM_SUBMIT_HOSTThe hostname of the node used for job submission.
$SLURM_JOB_NODELISTContains the definition (list) of the nodes that is assigned to the job.
$SLURM_NODELISTDeprecated. Same as SLURM_JOB_NODELIST.
$SLURM_CPUS_PER_TASKNumber of CPUs per task.
$SLURM_CPUS_ON_NODENumber of CPUs on the allocated node.
$SLURM_JOB_CPUS_PER_NODECount of processors available to the job on this node.
$SLURM_CPUS_PER_GPUNumber of CPUs requested per allocated GPU.
$SLURM_MEM_PER_CPUMemory per CPU. Same as –mem-per-cpu .
$SLURM_MEM_PER_GPUMemory per GPU.
$SLURM_MEM_PER_NODEMemory per node. Same as –mem .
$SLURM_GPUSNumber of GPUs requested.
$SLURM_NTASKSSame as -n, –ntasks. The number of tasks.
$SLURM_NTASKS_PER_NODENumber of tasks requested per node.
$SLURM_NTASKS_PER_SOCKETNumber of tasks requested per socket.
$SLURM_NTASKS_PER_CORENumber of tasks requested per core.
$SLURM_NTASKS_PER_GPUNumber of tasks requested per GPU.
$SLURM_NPROCSSame as -n, –ntasks. See $SLURM_NTASKS.
$SLURM_TASKS_PER_NODENumber of tasks to be initiated on each node.
$SLURM_ARRAY_JOB_IDJob array’s master job ID number.
$SLURM_ARRAY_TASK_IDJob array ID (index) number.
$SLURM_ARRAY_TASK_COUNTTotal number of tasks in a job array.
$SLURM_ARRAY_TASK_MAXJob array’s maximum ID (index) number.
$SLURM_ARRAY_TASK_MINJob array’s minimum ID (index) number.

A full list of environment variables for SLURM can be found by visiting the SLURM page on environment variables.

Aug 7, 2024

File Operations

File Distribution

  • sbcast is used to transfer a file from local disk to local disk on the nodes allocated to a job. This can be used to effectively use diskless compute nodes or provide improved performance relative to a shared file system.
    • Feature
      1. distribute file:Quickly copy files to all compute nodes assigned to the job, avoiding the hassle of manually distributing files. Faster than traditional scp or rsync, especially when distributing to multiple nodes。
      2. simplify script:one command to distribute files to all nodes assigned to the job。
      3. imrpove performance:Improve file distribution speed by parallelizing transfers, especially for large or multiple files。
    • Usage
      1. Alone
      sbcast <source_file> <destination_path>
      1. Embedded in a job script
      #!/bin/bash
      #SBATCH --job-name=example_job
      #SBATCH --output=example_job.out
      #SBATCH --error=example_job.err
      #SBATCH --partition=compute
      #SBATCH --nodes=4
      
      # Use sbcast to distribute the file to the /tmp directory of each node
      sbcast data.txt /tmp/data.txt
      
      # Run your program using the distributed files
      srun my_program /tmp/data.txt

File Collection

  1. File Redirection When submitting a job, you can use the #SBATCH –output and #SBATCH –error directives to redirect standard output and standard error to specified files.

     #SBATCH --output=output.txt
     #SBATCH --error=error.txt

    Or

    sbatch -N2 -w "compute[01-02]" -o result/file/path xxx.slurm
  2. Send the destination address manually Using scp or rsync in the job to copy the files from the compute nodes to the submit node

  3. Using NFS If a shared file system (such as NFS, Lustre, or GPFS) is configured in the computing cluster, the result files can be written directly to the shared directory. In this way, the result files generated by all nodes are automatically stored in the same location.

  4. Using sbcast

Aug 7, 2024

Submit Jobs

3 Type Jobs

  • srun is used to submit a job for execution or initiate job steps in real time.

    • Example
      1. run shell
      srun -N2 bin/hostname
      1. run script
      srun -N1 test.sh
      1. exec into slurmd node
      srun -w slurm-lensing-slurm-slurmd-cpu-2 --pty /bin/bash
  • sbatch is used to submit a job script for later execution. The script will typically contain one or more srun commands to launch parallel tasks.

    • Example

      1. submit a batch job
      sbatch -N2 -w "compute[01-02]" -o job.stdout /data/jobs/batch-job.slurm
      batch-job.slurm
      #!/bin/bash
      
      #SBATCH -N 1
      #SBATCH --job-name=cpu-N1-batch
      #SBATCH --partition=compute
      #SBATCH --mail-type=end
      #SBATCH --mail-user=xxx@email.com
      #SBATCH --output=%j.out
      #SBATCH --error=%j.err
      
      srun -l /bin/hostname #you can still write srun <command> in here
      srun -l pwd
      
      1. submit a parallel task to process differnt data partition
      sbatch /data/jobs/parallel.slurm
      parallel.slurm
      #!/bin/bash
      #SBATCH -N 2 
      #SBATCH --job-name=cpu-N2-parallel
      #SBATCH --partition=compute
      #SBATCH --time=01:00:00
      #SBATCH --array=1-4  # 定义任务数组,假设有4个分片
      #SBATCH --ntasks-per-node=1 # 每个节点只运行一个任务
      #SBATCH --output=process_data_%A_%a.out
      #SBATCH --error=process_data_%A_%a.err
      
      TASK_ID=${SLURM_ARRAY_TASK_ID}
      
      DATA_PART="data_part_${TASK_ID}.txt" #make sure you have that file
      
      if [ -f ${DATA_PART} ]; then
          echo "Processing ${DATA_PART} on node $(hostname)"
          # python process_data.py --input ${DATA_PART}
      else
          echo "File ${DATA_PART} does not exist!"
      fi
      
      how to split file
      split -l 1000 data.txt data_part_ 
      && mv data_part_aa data_part_1 
      && mv data_part_ab data_part_2
      
  • salloc is used to allocate resources for a job in real time. Typically this is used to allocate resources and spawn a shell. The shell is then used to execute srun commands to launch parallel tasks.

    • Example
      1. allocate resources (more like create an virtual machine)
      salloc -N2 bash
      This command will create a job which allocates 2 nodes and spawn a bash shell on each node. and you can execute srun commands in that environment. After your computing task is finsihs, remember to shutdown your job.
      scancel <$job_id>
      when you exit the job, the resources will be released.
Aug 7, 2024

Configuration Files

Aug 7, 2024

Subsections of MPI Libs

Test Intel MPI Jobs

在SLURM集群中使用MPI(Message Passing Interface)进行并行计算,通常需要以下几个步骤:

1. 安装MPI库

确保你的集群节点已经安装了MPI库,常见的MPI实现包括:

  • OpenMPI
  • Intel MPI
  • MPICH 可以通过以下命令检查集群是否安装了MPI:
mpicc --version  # 检查MPI编译器
mpirun --version # 检查MPI运行时环境

2. 测试MPI性能

mpirun -n 2 IMB-MPI1 pingpong

3. 编译MPI程序

你可以用mpicc(C语言)或mpic++(C++语言)来编译MPI程序。例如:

以下是一个简单的MPI “Hello, World!” 示例程序,假设文件名为 hello_mpi.c, 还有一个进行矩阵计算的示例程序,文件名为dot_product.c,任意挑选一个即可:

#include <stdio.h>
#include <mpi.h>

int main(int argc, char *argv[]) {
    int rank, size;
    
    // 初始化MPI环境
    MPI_Init(&argc, &argv);

    // 获取当前进程的rank和总进程数
    MPI_Comm_rank(MPI_COMM_WORLD, &rank);
    MPI_Comm_size(MPI_COMM_WORLD, &size);

    // 输出进程的信息
    printf("Hello, World! I am process %d out of %d processes.\n", rank, size);

    // 退出MPI环境
    MPI_Finalize();

    return 0;
}
#include <stdio.h>
#include <stdlib.h>
#include <mpi.h>

#define N 8  // 向量大小

// 计算向量的局部点积
double compute_local_dot_product(double *A, double *B, int start, int end) {
    double local_dot = 0.0;
    for (int i = start; i < end; i++) {
        local_dot += A[i] * B[i];
    }
    return local_dot;
}

void print_vector(double *Vector) {
    for (int i = 0; i < N; i++) {
        printf("%f ", Vector[i]);   
    }
    printf("\n");
}

int main(int argc, char *argv[]) {
    int rank, size;

    // 初始化MPI环境
    MPI_Init(&argc, &argv);
    MPI_Comm_rank(MPI_COMM_WORLD, &rank);
    MPI_Comm_size(MPI_COMM_WORLD, &size);

    // 向量A和B
    double A[N], B[N];

    // 进程0初始化向量A和B
    if (rank == 0) {
        for (int i = 0; i < N; i++) {
            A[i] = i + 1;  // 示例数据
            B[i] = (i + 1) * 2;  // 示例数据
        }
    }

    // 广播向量A和B到所有进程
    MPI_Bcast(A, N, MPI_DOUBLE, 0, MPI_COMM_WORLD);
    MPI_Bcast(B, N, MPI_DOUBLE, 0, MPI_COMM_WORLD);

    // 每个进程计算自己负责的部分
    int local_n = N / size;  // 每个进程处理的元素个数
    int start = rank * local_n;
    int end = (rank + 1) * local_n;
    
    // 如果是最后一个进程,确保处理所有剩余的元素(处理N % size)
    if (rank == size - 1) {
        end = N;
    }

    double local_dot_product = compute_local_dot_product(A, B, start, end);

    // 使用MPI_Reduce将所有进程的局部点积结果汇总到进程0
    double global_dot_product = 0.0;
    MPI_Reduce(&local_dot_product, &global_dot_product, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);

    // 进程0输出最终结果
    if (rank == 0) {
        printf("Vector A is\n");
        print_vector(A);
        printf("Vector B is\n");
        print_vector(B);
        printf("Dot Product of A and B: %f\n", global_dot_product);
    }

    // 结束MPI环境
    MPI_Finalize();
    return 0;
}

3. 创建Slurm作业脚本

创建一个SLURM作业脚本来运行该MPI程序。以下是一个基本的SLURM作业脚本,假设文件名为 mpi_test.slurm:

#!/bin/bash
#SBATCH --job-name=mpi_job       # Job name
#SBATCH --nodes=2                # Number of nodes to use
#SBATCH --ntasks-per-node=1      # Number of tasks per node
#SBATCH --time=00:10:00          # Time limit
#SBATCH --output=mpi_test_output_%j.log     # Standard output file
#SBATCH --error=mpi_test_output_%j.err     # Standard error file

# Manually set Intel OneAPI MPI and Compiler environment
export I_MPI_PMI=pmi2
export I_MPI_PMI_LIBRARY=/usr/lib/x86_64-linux-gnu/slurm/mpi_pmi2.so
export I_MPI_ROOT=/opt/intel/oneapi/mpi/2021.14
export INTEL_COMPILER_ROOT=/opt/intel/oneapi/compiler/2025.0
export PATH=$I_MPI_ROOT/bin:$INTEL_COMPILER_ROOT/bin:$PATH
export LD_LIBRARY_PATH=$I_MPI_ROOT/lib:$INTEL_COMPILER_ROOT/lib:$LD_LIBRARY_PATH
export MANPATH=$I_MPI_ROOT/man:$INTEL_COMPILER_ROOT/man:$MANPATH

# Compile the MPI program
icx-cc -I$I_MPI_ROOT/include  hello_mpi.c -o hello_mpi -L$I_MPI_ROOT/lib -lmpi

# Run the MPI job

mpirun -np 2 ./hello_mpi
#!/bin/bash
#SBATCH --job-name=mpi_job       # Job name
#SBATCH --nodes=2                # Number of nodes to use
#SBATCH --ntasks-per-node=1      # Number of tasks per node
#SBATCH --time=00:10:00          # Time limit
#SBATCH --output=mpi_test_output_%j.log     # Standard output file
#SBATCH --error=mpi_test_output_%j.err     # Standard error file

# Manually set Intel OneAPI MPI and Compiler environment
export I_MPI_PMI=pmi2
export I_MPI_PMI_LIBRARY=/usr/lib/x86_64-linux-gnu/slurm/mpi_pmi2.so
export I_MPI_ROOT=/opt/intel/oneapi/mpi/2021.14
export INTEL_COMPILER_ROOT=/opt/intel/oneapi/compiler/2025.0
export PATH=$I_MPI_ROOT/bin:$INTEL_COMPILER_ROOT/bin:$PATH
export LD_LIBRARY_PATH=$I_MPI_ROOT/lib:$INTEL_COMPILER_ROOT/lib:$LD_LIBRARY_PATH
export MANPATH=$I_MPI_ROOT/man:$INTEL_COMPILER_ROOT/man:$MANPATH

# Compile the MPI program
icx-cc -I$I_MPI_ROOT/include  dot_product.c -o dot_product -L$I_MPI_ROOT/lib -lmpi

# Run the MPI job

mpirun -np 2 ./dot_product

4. 编译MPI程序

在运行作业之前,你需要编译MPI程序。在集群上使用mpicc来编译该程序。假设你将程序保存在 hello_mpi.c 文件中,使用以下命令进行编译:

mpicc -o hello_mpi hello_mpi.c
mpicc -o dot_product dot_product.c

5. 提交Slurm作业

保存上述作业脚本(mpi_test.slurm)并使用以下命令提交作业:

sbatch mpi_test.slurm

6. 查看作业状态

你可以使用以下命令查看作业的状态:

squeue -u <your_username>

7. 检查输出

作业完成后,输出将保存在你作业脚本中指定的文件中(例如 mpi_test_output_<job_id>.log)。你可以使用 cat 或任何文本编辑器查看输出:

cat mpi_test_output_*.log

示例输出 如果一切正常,输出会类似于:

Hello, World! I am process 0 out of 2 processes.
Hello, World! I am process 1 out of 2 processes.
Result Matrix C (A * B):
14 8 2 -4 
20 10 0 -10 
-1189958655 1552515295 21949 -1552471397 
0 0 0 0 
Aug 7, 2024

Test Open MPI Jobs

在SLURM集群中使用MPI(Message Passing Interface)进行并行计算,通常需要以下几个步骤:

1. 安装MPI库

确保你的集群节点已经安装了MPI库,常见的MPI实现包括:

  • OpenMPI
  • Intel MPI
  • MPICH 可以通过以下命令检查集群是否安装了MPI:
mpicc --version  # 检查MPI编译器
mpirun --version # 检查MPI运行时环境

2. 编译MPI程序

你可以用mpicc(C语言)或mpic++(C++语言)来编译MPI程序。例如:

以下是一个简单的MPI “Hello, World!” 示例程序,假设文件名为 hello_mpi.c, 还有一个进行矩阵计算的示例程序,文件名为dot_product.c,任意挑选一个即可:

#include <stdio.h>
#include <mpi.h>

int main(int argc, char *argv[]) {
    int rank, size;
    
    // 初始化MPI环境
    MPI_Init(&argc, &argv);

    // 获取当前进程的rank和总进程数
    MPI_Comm_rank(MPI_COMM_WORLD, &rank);
    MPI_Comm_size(MPI_COMM_WORLD, &size);

    // 输出进程的信息
    printf("Hello, World! I am process %d out of %d processes.\n", rank, size);

    // 退出MPI环境
    MPI_Finalize();

    return 0;
}
#include <stdio.h>
#include <stdlib.h>
#include <mpi.h>

#define N 8  // 向量大小

// 计算向量的局部点积
double compute_local_dot_product(double *A, double *B, int start, int end) {
    double local_dot = 0.0;
    for (int i = start; i < end; i++) {
        local_dot += A[i] * B[i];
    }
    return local_dot;
}

void print_vector(double *Vector) {
    for (int i = 0; i < N; i++) {
        printf("%f ", Vector[i]);   
    }
    printf("\n");
}

int main(int argc, char *argv[]) {
    int rank, size;

    // 初始化MPI环境
    MPI_Init(&argc, &argv);
    MPI_Comm_rank(MPI_COMM_WORLD, &rank);
    MPI_Comm_size(MPI_COMM_WORLD, &size);

    // 向量A和B
    double A[N], B[N];

    // 进程0初始化向量A和B
    if (rank == 0) {
        for (int i = 0; i < N; i++) {
            A[i] = i + 1;  // 示例数据
            B[i] = (i + 1) * 2;  // 示例数据
        }
    }

    // 广播向量A和B到所有进程
    MPI_Bcast(A, N, MPI_DOUBLE, 0, MPI_COMM_WORLD);
    MPI_Bcast(B, N, MPI_DOUBLE, 0, MPI_COMM_WORLD);

    // 每个进程计算自己负责的部分
    int local_n = N / size;  // 每个进程处理的元素个数
    int start = rank * local_n;
    int end = (rank + 1) * local_n;
    
    // 如果是最后一个进程,确保处理所有剩余的元素(处理N % size)
    if (rank == size - 1) {
        end = N;
    }

    double local_dot_product = compute_local_dot_product(A, B, start, end);

    // 使用MPI_Reduce将所有进程的局部点积结果汇总到进程0
    double global_dot_product = 0.0;
    MPI_Reduce(&local_dot_product, &global_dot_product, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);

    // 进程0输出最终结果
    if (rank == 0) {
        printf("Vector A is\n");
        print_vector(A);
        printf("Vector B is\n");
        print_vector(B);
        printf("Dot Product of A and B: %f\n", global_dot_product);
    }

    // 结束MPI环境
    MPI_Finalize();
    return 0;
}

3. 创建Slurm作业脚本

创建一个SLURM作业脚本来运行该MPI程序。以下是一个基本的SLURM作业脚本,假设文件名为 mpi_test.slurm:

#!/bin/bash
#SBATCH --job-name=mpi_test                 # 作业名称
#SBATCH --nodes=2                           # 请求节点数
#SBATCH --ntasks-per-node=1                 # 每个节点上的任务数
#SBATCH --time=00:10:00                     # 最大运行时间
#SBATCH --output=mpi_test_output_%j.log     # 输出日志文件

# 加载MPI模块(如果使用模块化环境)
module load openmpi

# 运行MPI程序
mpirun --allow-run-as-root -np 2 ./hello_mpi
#!/bin/bash
#SBATCH --job-name=mpi_test                 # 作业名称
#SBATCH --nodes=2                           # 请求节点数
#SBATCH --ntasks-per-node=1                 # 每个节点上的任务数
#SBATCH --time=00:10:00                     # 最大运行时间
#SBATCH --output=mpi_test_output_%j.log     # 输出日志文件

# 加载MPI模块(如果使用模块化环境)
module load openmpi

# 运行MPI程序
mpirun --allow-run-as-root -np 2 ./dot_product

4. 编译MPI程序

在运行作业之前,你需要编译MPI程序。在集群上使用mpicc来编译该程序。假设你将程序保存在 hello_mpi.c 文件中,使用以下命令进行编译:

mpicc -o hello_mpi hello_mpi.c
mpicc -o dot_product dot_product.c

5. 提交Slurm作业

保存上述作业脚本(mpi_test.slurm)并使用以下命令提交作业:

sbatch mpi_test.slurm

6. 查看作业状态

你可以使用以下命令查看作业的状态:

squeue -u <your_username>

7. 检查输出

作业完成后,输出将保存在你作业脚本中指定的文件中(例如 mpi_test_output_<job_id>.log)。你可以使用 cat 或任何文本编辑器查看输出:

cat mpi_test_output_*.log

示例输出 如果一切正常,输出会类似于:

Hello, World! I am process 0 out of 2 processes.
Hello, World! I am process 1 out of 2 processes.
Result Matrix C (A * B):
14 8 2 -4 
20 10 0 -10 
-1189958655 1552515295 21949 -1552471397 
0 0 0 0